Cell Death Discovery (Apr 2022)
HtrA2/Omi mitigates NAFLD in high-fat-fed mice by ameliorating mitochondrial dysfunction and restoring autophagic flux
Abstract
Abstract Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver metabolic syndrome which affects millions of people worldwide. Recently, improving mitochondrial function and autophagic ability have been proposed as a means to prevent NAFLD. It has been previously described that high-temperature requirement protein A2 (HtrA2/Omi) favors mitochondrial homeostasis and autophagy in hepatocytes. Thus, we explored the effects of HtrA2/Omi on regulating mitochondrial function and autophagy during NAFLD development. High-fat diet (HFD)-induced NAFLD in mice and free fatty acids (FFAs)-induced hepatocytes steatosis in vitro were established. Adeno-associated viruses (AAV) in vivo and plasmid in vitro were used to restore HtrA2/Omi expression. In this study, we reported that HtrA2/Omi expression considerably decreased in liver tissues from the HFD-induced NAFLD model and in L02 cells with FFA-treated. However, restoring HtrA2/Omi ameliorated hepatic steatosis, confirming by improved serum lipid profiles, glucose homeostasis, insulin resistance, histopathological lipid accumulation, and the gene expression related to lipid metabolism. Moreover, HtrA2/Omi also attenuated HFD-mediated mitochondrial dysfunction and autophagic blockage. TEM analysis revealed that liver mitochondrial structure and autophagosome formation were improved in hepatic HtrA2/Omi administration mice compared to HFD mice. And hepatic HtrA2/Omi overexpression enhanced mitochondrial fatty acid β-oxidation gene expression, elevated LC3II protein levels, induced LC3 puncta, and decreased SQSTM1/p62 protein levels. Furthermore, hepatic HtrA2/Omi increased respiratory exchange ratio and heat production in mice. Finally, HtrA2/Omi overexpression by plasmid significantly diminished lipid accumulation, mitochondrial dysfunction, and autophagic inhibition in FFA-treated L02 hepatocytes. Taken together, we demonstrated that HtrA2/Omi was a potential candidate for the treatment of NAFLD via improving mitochondrial functions, as well as restoring autophagic flux.