Aerospace (Jun 2022)
An Improved Fault Identification Method for Electromechanical Actuators
Abstract
Adoption of electromechanical actuation systems in aerospace is increasing, and so reliable diagnostic and prognostics schemes are required to ensure safe operations, especially in key, safety-critical systems such as primary flight controls. Furthermore, the use of prognostics methods can increase the system availability during the life cycle and thus reduce costs if implemented in a predictive maintenance framework. In this work, an improvement of an already presented algorithm will be introduced, whose scope is to predict the actual degradation state of a motor in an electromechanical actuator, also providing a temperature estimation. This objective is achieved by using a properly processed back-electromotive force signal and a simple feed-forward neural network. Good prediction of the motor health status is achieved with a small degree of inaccuracy.
Keywords