Nanotechnology Reviews (Sep 2021)
High-efficiency nano polishing of steel materials
Abstract
The application of a specific rheological polishing slurry is proposed first for high-efficiency machining of steel materials to achieve high-quality ultraprecision finished surfaces. The rheology of the polishing slurry was explored to show that the non-Newtonian medium with certain parameters of content components exhibits shear-thickening behavior. Then the new high-efficiency nano polishing approach is applied to process spherical surfaces of bearing steel. Several controllable parameters such as shear rheology, abrasive data, rotational speed, and processing time are experimentally investigated in this polishing process. A special finding is that the surface roughness and material removal rate can increase simultaneously when a small abrasive size is applied due to the thickening mechanism during the shearing flow of slurries. Excessive abrasives can decrease surface quality due to the uneven agglomeration of particles scratching the surface. Under optimized conditions, a high-accuracy spherical bearing steel surface with a roughness of 12.6 nm and roundness of 5.3 μm was achieved after a processing time of 2.5 h. Thus, a potential ultraprecision machining method for target materials is obtained in this study.
Keywords