Unidad de Producción y Reprogramación Celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RAdytTA), Fundación Progreso y Salud, 41092 Sevilla, Spain
Rafael Campos-Cuerva
Unidad de Producción y Reprogramación Celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RAdytTA), Fundación Progreso y Salud, 41092 Sevilla, Spain
Cristina Rosell-Valle
Unidad de Producción y Reprogramación Celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RAdytTA), Fundación Progreso y Salud, 41092 Sevilla, Spain
María Martin-López
Unidad de Producción y Reprogramación Celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RAdytTA), Fundación Progreso y Salud, 41092 Sevilla, Spain
Carlos Casado
Unidad de Producción y Reprogramación Celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RAdytTA), Fundación Progreso y Salud, 41092 Sevilla, Spain
Daniela Ferrari
Department of Biotechnology and Biosciences, University Milan-Bicocca, 20126 Milan, Italy
Javier Márquez-Rivas
IBiS, Instituto de Biomedicina de Sevilla, 41013 Sevilla, Spain
Rosario Sánchez-Pernaute
Unidad de Producción y Reprogramación Celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RAdytTA), Fundación Progreso y Salud, 41092 Sevilla, Spain
Beatriz Fernández-Muñoz
Unidad de Producción y Reprogramación Celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RAdytTA), Fundación Progreso y Salud, 41092 Sevilla, Spain
Animal models currently used to test the efficacy and safety of cell therapies, mainly murine models, have limitations as molecular, cellular, and physiological mechanisms are often inherently different between species, especially in the brain. Therefore, for clinical translation of cell-based medicinal products, the development of alternative models based on human neural cells may be crucial. We have developed an in vitro model of transplantation into human brain organoids to study the potential of neural stem cells as cell therapeutics and compared these data with standard xenograft studies in the brain of immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice. Neural stem cells showed similar differentiation and proliferation potentials in both human brain organoids and mouse brains. Our results suggest that brain organoids can be informative in the evaluation of cell therapies, helping to reduce the number of animals used for regulatory studies.