A Neural Network-Based Model Reference Control Architecture for Oscillation Damping in Interconnected Power System

Energies. 2019;12(19):3653 DOI 10.3390/en12193653

 

Journal Homepage

Journal Title: Energies

ISSN: 1996-1073 (Print)

Publisher: MDPI AG

LCC Subject Category: Technology

Country of publisher: Switzerland

Language of fulltext: English

Full-text formats available: PDF, HTML

 

AUTHORS

Waqar Uddin (School of Electrical and Computer Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan-city-46241, Korea)
Nadia Zeb (Department of Electrical Engineering, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, Pakistan)
Kamran Zeb (School of Electrical and Computer Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan-city-46241, Korea)
Muhammad Ishfaq (School of Electrical and Computer Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan-city-46241, Korea)
Imran Khan (School of Electrical and Computer Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan-city-46241, Korea)
Saif Ul Islam (School of Electrical and Computer Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan-city-46241, Korea)
Ayesha Tanoli (Department of Electrical Engineering, University of Management and Technology, Lahore, Sialkot Campus, Sialkot 51040, Pakistan)
Aun Haider (Department of Electrical Engineering, University of Management and Technology, Lahore, Sialkot Campus, Sialkot 51040, Pakistan)
Hee-Je Kim (School of Electrical and Computer Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan-city-46241, Korea)
Gwan-Soo Park (School of Electrical and Computer Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan-city-46241, Korea)

EDITORIAL INFORMATION

Blind peer review

Editorial Board

Instructions for authors

Time From Submission to Publication: 11 weeks

 

Abstract | Full Text

In this paper, a model reference controller (MRC) based on a neural network (NN) is proposed for damping oscillations in electric power systems. Variation in reactive load, internal or external perturbation/faults, and asynchronization of the connected machine cause oscillations in power systems. If the oscillation is not damped properly, it will lead to a complete collapse of the power system. An MRC base unified power flow controller (UPFC) is proposed to mitigate the oscillations in 2-area, 4-machine interconnected power systems. The MRC controller is using the NN for training, as well as for plant identification. The proposed NN-based MRC controller is capable of damping power oscillations; hence, the system acquires a stable condition. The response of the proposed MRC is compared with the traditionally used proportional integral (PI) controller to validate its performance. The key performance indicator integral square error (ISE) and integral absolute error (IAE) of both controllers is calculated for single phase, two phase, and three phase faults. MATLAB/Simulink is used to implement and simulate the 2-area, 4-machine power system.