Nano-Optomechanical Resonators Based on Suspended Graphene for Thermal Stress Sensing
Shen Liu,
Hang Xiao,
Yanping Chen,
Peijing Chen,
Wenqi Yan,
Qiao Lin,
Bonan Liu,
Xizhen Xu,
Yiping Wang,
Xiaoyu Weng,
Liwei Liu,
Junle Qu
Affiliations
Shen Liu
Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, No. 3688, Nanhai Avenue, Shenzhen 518060, China
Hang Xiao
Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, No. 3688, Nanhai Avenue, Shenzhen 518060, China
Yanping Chen
Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, No. 3688, Nanhai Avenue, Shenzhen 518060, China
Peijing Chen
Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, No. 3688, Nanhai Avenue, Shenzhen 518060, China
Wenqi Yan
Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, No. 3688, Nanhai Avenue, Shenzhen 518060, China
Qiao Lin
Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, No. 3688, Nanhai Avenue, Shenzhen 518060, China
Bonan Liu
Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, No. 3688, Nanhai Avenue, Shenzhen 518060, China
Xizhen Xu
Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, No. 3688, Nanhai Avenue, Shenzhen 518060, China
Yiping Wang
Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, No. 3688, Nanhai Avenue, Shenzhen 518060, China
Xiaoyu Weng
Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, No. 3688, Nanhai Avenue, Shenzhen 518060, China
Liwei Liu
Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, No. 3688, Nanhai Avenue, Shenzhen 518060, China
Junle Qu
Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, No. 3688, Nanhai Avenue, Shenzhen 518060, China
Nanomechanical resonators made from suspended graphene combine the properties of ultracompactness and ultrahigh detection sensitivity, making them interesting devices for sensing applications. However, nanomechanical systems can be affected by membrane stress. The present work developed an optomechanical resonator for thermal stress sensing. The proposed resonator consists of a section of hollow core fiber (HCF) and a trampoline graphene–Au membrane. An all-optical system that integrated optical excitation and optical detection was applied. Then, the resonance frequency of the resonator was obtained through this all-optical system. In addition, this system and the resonator were used to detect the membrane’s built-in stress, which depended on the ambient temperature, by monitoring the resonance frequency shift. The results verified that the temperature-induced thermal effect had a significant impact on membrane stress. Temperature sensitivities of 2.2646 kHz/°C and 2.3212 kHz/°C were obtained when the temperature rose and fell, respectively. As such, we believe that this device will be beneficial for the quality monitoring of graphene mechanical resonators.