PRC1 Prevents Replication Stress during Chondrogenic Transit Amplification
Frank Spaapen,
Lars M. T. Eijssen,
Michiel E. Adriaens,
Tim J. Welting,
Peggy Prickaerts,
Juliette Salvaing,
Vivian E. H. Dahlmans,
Donald A. M. Surtel,
Frans Kruitz,
Roel Kuijer,
Yoshihiro Takihara,
Hendrik Marks,
Hendrik G. Stunnenberg,
Bradly G. Wouters,
Miguel Vidal,
Jan Willem Voncken
Affiliations
Frank Spaapen
Department of Molecular Genetics , Maastricht University Medical Center, Universiteitssingel 50-60, 6229ER Maastricht, The Netherlands
Lars M. T. Eijssen
Department of Bioinformatics (BiGCaT), Maastricht University Medical Center, Universiteitssingel 50-60, 6229ER Maastricht, The Netherlands
Michiel E. Adriaens
Maastricht Centre for Systems Biology—MaCSBio, Maastricht University Medical Center, Universiteitssingel 50-60, 6229ER Maastricht, The Netherlands
Tim J. Welting
Department of Orthopedic Research, Maastricht University Medical Center, Universiteitssingel 50-60, 6229ER Maastricht, The Netherlands
Peggy Prickaerts
Department of Molecular Genetics , Maastricht University Medical Center, Universiteitssingel 50-60, 6229ER Maastricht, The Netherlands
Juliette Salvaing
Department of Molecular Genetics , Maastricht University Medical Center, Universiteitssingel 50-60, 6229ER Maastricht, The Netherlands
Vivian E. H. Dahlmans
Department of Molecular Genetics , Maastricht University Medical Center, Universiteitssingel 50-60, 6229ER Maastricht, The Netherlands
Donald A. M. Surtel
Department of Orthopedic Research, Maastricht University Medical Center, Universiteitssingel 50-60, 6229ER Maastricht, The Netherlands
Frans Kruitz
Department of Molecular Genetics , Maastricht University Medical Center, Universiteitssingel 50-60, 6229ER Maastricht, The Netherlands
Roel Kuijer
Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Deusinglaan 1, 9713AV Groningen, The Netherlands
Yoshihiro Takihara
Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
Hendrik Marks
Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, Geert Grooteplein 28, 6525GA Nijmegen, The Netherlands
Hendrik G. Stunnenberg
Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, Geert Grooteplein 28, 6525GA Nijmegen, The Netherlands
Bradly G. Wouters
Maastricht Radiation Oncology (MaastRO) Laboratory, Maastricht University Medical Center, Universiteitssingel 50-60, 6229ER Maastricht, The Netherlands
Miguel Vidal
Department of Cell and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Velázquez 144, 28006 Madrid, Spain
Jan Willem Voncken
Department of Molecular Genetics , Maastricht University Medical Center, Universiteitssingel 50-60, 6229ER Maastricht, The Netherlands
Transit amplification (TA), a state of combined, rapid proliferative expansion and differentiation of stem cell-descendants, remains poorly defined at the molecular level. The Polycomb Repressive Complex 1 (PRC1) protein BMI1 has been localized to TA compartments, yet its exact role in TA is unclear. PRC1 proteins control gene expression, cell proliferation and DNA-damage repair. Coordination of such DNA-templated activities during TA is predicted to be crucial to support DNA replication and differentiation-associated transcriptional programming. We here examined whether chondrogenesis provides a relevant biological context for synchronized coordination of these chromatin-based tasks by BMI1. Taking advantage of a prominently featuring TA-phase during chondrogenesis in vitro and in vivo, we here report that TA is completely dependent on intact PRC1 function. BMI1-depleted chondrogenic progenitors rapidly accumulate double strand DNA breaks during DNA replication, present massive non-H3K27me3-directed transcriptional deregulation and fail to undergo chondrogenic TA. Genome-wide accumulation of Topoisomerase 2α and Geminin suggests a model in which PRC1 synchronizes replication and transcription during rapid chondrogenic progenitor expansion. Our combined data reveals for the first time a vital cell-autonomous role for PRC1 during chondrogenesis. We provide evidence that chondrocyte hyper-replication and hypertrophy represent a unique example of programmed senescence in vivo. These findings provide new perspectives on PRC1 function in development and disease.