Nanoelectromechanical Sensors Based on Suspended 2D Materials
Max C. Lemme,
Stefan Wagner,
Kangho Lee,
Xuge Fan,
Gerard J. Verbiest,
Sebastian Wittmann,
Sebastian Lukas,
Robin J. Dolleman,
Frank Niklaus,
Herre S. J. van der Zant,
Georg S. Duesberg,
Peter G. Steeneken
Affiliations
Max C. Lemme
Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Str. 2, 52074 Aachen, Germany; AMO GmbH, Advanced Microelectronic Center Aachen (AMICA), Otto-Blumenthal-Str. 25, 52074 Aachen, Germany
Stefan Wagner
AMO GmbH, Advanced Microelectronic Center Aachen (AMICA), Otto-Blumenthal-Str. 25, 52074 Aachen, Germany
Kangho Lee
Institute of Physics, Faculty of Electrical Engineering and Information Technology, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
Xuge Fan
Division of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas Väg 10, 10044 Stockholm, Sweden
Gerard J. Verbiest
Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, Netherlands
2nd Institute of Physics, RWTH Aachen University, Otto-Blumenthal-Str., 52074 Aachen, Germany
Frank Niklaus
Division of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas Väg 10, 10044 Stockholm, Sweden
Herre S. J. van der Zant
Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands
Georg S. Duesberg
Institute of Physics, Faculty of Electrical Engineering and Information Technology, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
Peter G. Steeneken
Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, Netherlands; Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands
The unique properties and atomic thickness of two-dimensional (2D) materials enable smaller and better nanoelectromechanical sensors with novel functionalities. During the last decade, many studies have successfully shown the feasibility of using suspended membranes of 2D materials in pressure sensors, microphones, accelerometers, and mass and gas sensors. In this review, we explain the different sensing concepts and give an overview of the relevant material properties, fabrication routes, and device operation principles. Finally, we discuss sensor readout and integration methods and provide comparisons against the state of the art to show both the challenges and promises of 2D material-based nanoelectromechanical sensing.