Cells (Nov 2023)

SMYD3 Modulates AMPK-mTOR Signaling Balance in Cancer Cell Response to DNA Damage

  • Martina Lepore Signorile,
  • Paola Sanese,
  • Elisabetta Di Nicola,
  • Candida Fasano,
  • Giovanna Forte,
  • Katia De Marco,
  • Vittoria Disciglio,
  • Marialaura Latrofa,
  • Antonino Pantaleo,
  • Greta Varchi,
  • Alberto Del Rio,
  • Valentina Grossi,
  • Cristiano Simone

DOI
https://doi.org/10.3390/cells12222644
Journal volume & issue
Vol. 12, no. 22
p. 2644

Abstract

Read online

Cells respond to DNA damage by activating a complex array of signaling networks, which include the AMPK and mTOR pathways. After DNA double-strand breakage, ATM, a core component of the DNA repair system, activates the AMPK-TSC2 pathway, leading to the inhibition of the mTOR cascade. Recently, we showed that both AMPK and mTOR interact with SMYD3, a methyltransferase involved in DNA damage response. In this study, through extensive molecular characterization of gastrointestinal and breast cancer cells, we found that SMYD3 is part of a multiprotein complex that is involved in DNA damage response and also comprises AMPK and mTOR. In particular, upon exposure to the double-strand break-inducing agent neocarzinostatin, SMYD3 pharmacological inhibition suppressed AMPK cascade activation and thereby promoted the mTOR pathway, which reveals the central role played by SMYD3 in the modulation of AMPK-mTOR signaling balance during cancer cell response to DNA double-strand breaks. Moreover, we found that SMYD3 can methylate AMPK at the evolutionarily conserved residues Lys411 and Lys424. Overall, our data revealed that SMYD3 can act as a bridge between the AMPK and mTOR pathways upon neocarzinostatin-induced DNA damage in gastrointestinal and breast cancer cells.

Keywords