Applied Sciences (Aug 2025)

Transformer-Based Traffic Flow Prediction Considering Spatio-Temporal Correlations of Bridge Networks

  • Yadi Tian,
  • Wanheng Li,
  • Xiaojing Wang,
  • Xin Yan,
  • Yang Xu

DOI
https://doi.org/10.3390/app15168930
Journal volume & issue
Vol. 15, no. 16
p. 8930

Abstract

Read online

With the widespread implementation of bridge structural health monitoring (SHM) systems, monitored bridge networks have gradually formed. Understanding vehicle loads and considering spatio-temporal correlations within bridge networks is critical for structural condition assessment and maintenance decision making. This study aims to predict traffic flows by investigating traffic flow correlations within a bridge network using multi-bridge data, thereby supporting bridge network-level SHM. A transformer-based traffic flow prediction model considering spatio-temporal correlations of bridge networks (ST-TransNet) is proposed. It integrates external factors (processed via fully connected networks) and multi-period traffic flows of input bridges (captured by self-attention encoders) to generate traffic flow predictions through a self-attention decoder. Validated using weigh-in-motion data from an 8-bridge network, the proposed ST-TransNet reduces prediction root mean square error (RMSE) to 12.76 vehicles/10 min, outperforming a series of baselines—SVR, CNN, BiLSTM, CNN&BiLSTM, ST-ResNet, transformer, and STGCN—with significant relative reductions of 40.5%, 36.9%, 36.6%, 37.3%, 35.6%, 31.1%, and 22.8%, respectively. Ablation studies confirm the contribution of each component of the external factors and multi-period traffic flows, particularly the recent traffic flow data. The proposed ST-TransNet effectively captures underlying the spatio-temporal correlations of traffic flow within bridge networks, offering valuable insights for enhancing bridge assessment and maintenance.

Keywords