PLoS ONE (Jan 2014)

Regulation of Sox6 by cyclin dependent kinase 5 in brain.

  • Parvathi Rudrabhatla,
  • Elias Utreras,
  • Howard Jaffe,
  • Ashok B Kulkarni

DOI
https://doi.org/10.1371/journal.pone.0089310
Journal volume & issue
Vol. 9, no. 3
p. e89310

Abstract

Read online

Cyclin dependent kinase 5 (Cdk5) is a proline-directed Ser/Thr kinase involved in various biological functions during normal brain development and neurodegeneration. In brain, Cdk5 activity is specific to post-mitotic neurons, due to neuronal specific expression of its activator p35. The biological functions of Cdk5 have been ascribed to its cytoplasmic substrates, however not much is known in nucleus. Here, we show that nuclear transcription factor Sox6 is a direct nuclear target of Cdk5. Sox6 is expressed in Tuj1 positive neurons, suggesting that Sox6 is expressed in differentiating neurons. The expression of Sox6 is high in mitotic nuclei during embryonic day 12 (E12) and gradually decreases during development into adult. On the other hand, Cdk5 expression gradually increases during its development. We show that Sox6 is expressed in mitotic nuclei in embryonic day 12 (E12) and in migrating neurons of E16. Sox6 is phosphorylated in vivo. Sox6 was detected by phospho-Ser/Thr and phospho-Ser/Thr-Pro and MPM-2 (Mitotic protein #2) antibodies in brain. Furthermore, calf intestinal alkaline phosphatase (CIAP) digestion resulted in faster migration of Sox6 band. The GST-Sox6 was phosphorylated by Cdk5/p35. The mass spectrometry analysis revealed that Sox6 is phosphorylated at T119PER motif. We show that Sox6 steady state levels are regulated by Cdk5. Cdk5 knockout mice die in utero and Sox6 protein expression is remarkably high in Cdk5-/- brain, however, there is no change in mRNA expression, suggesting a post-translational regulation of Sox6 by Cdk5. Transfection of primary cortical neurons with WT Cdk5 reduced Sox6 levels, while dominant negative (DN) Cdk5 and p35 increased Sox6 levels. Thus, our results indicate that Cdk5 regulates Sox6 steady state protein level that has an important role in brain development and function.