Cybernetics and Information Technologies (Dec 2020)
Design of Multi-Epitope Vaccine against SARS-CoV-2
Abstract
The ongoing COVID-19 pandemic requires urgently specific therapeutics and approved vaccines. Here, the four structural proteins of the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), the causative agent of COVID-19, are screened by in-house immunoinformatic tools to identify peptides acting as potential T-cell epitopes. In order to act as an epitope, the peptide should be processed in the host cell and presented on the cell surface in a complex with the Human Leukocyte Antigen (HLA). The aim of the study is to predict the binding affinities of all peptides originating from the structural proteins of SARS-CoV-2 to 30 most frequent in the human population HLA proteins of class I and class II and to select the high binders (IC50 < 50 nM). The predicted high binders are compared to known high binders from SARS-CoV conserved in CoV-2 and 77% of them coincided. The high binders will be uploaded onto lipid nanoparticles and the multi-epitope vaccine prototype will be tested for ability to provoke T-cell mediated immunity and protection against SARS-CoV-2.
Keywords