Clinical Phytoscience (Dec 2019)

Antioxidant and antineoplastic activities of roots of Hibiscus sabdariffa Linn. Against Ehrlich ascites carcinoma cells

  • Rumana Yesmin Hasi,
  • Hanif Ali,
  • Majidul Islam,
  • Rowshanul Habib,
  • Mohammed A. Satter,
  • Tanzima Yeasmin

DOI
https://doi.org/10.1186/s40816-019-0147-6
Journal volume & issue
Vol. 5, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background The goal of this study was to explore the inherent antioxidant and antineoplastic activities of methanolic extract of the roots of Hibiscus sabdariffa (MEHSR). Methods The dried coarse powder of roots of Hibiscus sabdariffa was subjected to methanolic extraction. Here in vitro methods were used to determine the various types of phytochemical content and antioxidant activity of MEHSR as well as its cytotoxic effect against Ehrlich ascites carcinoma (EAC) cells. In vivo, antineoplastic activity of MEHSR against EAC cells was also evaluated by determining the viable tumor cell count, survival time, body weight gain, hematological profiles of experimental mice along with observing morphological changes of EAC cells by fluorescence microscope. Analysis of the chemical composition of MEHSR was carried out using GC-MS. Results Total phenolic and flavonoid contents of MEHSR were found to be 143.36 and 82.81 mg/g of extract in terms of gallic acid and catechin equivalent, respectively. The MEHSR exhibited very good scavenging property on DPPH (IC50: 13.37 μg/mL) and ABTS (IC50: 18.88 μg/mL) radicals in respect to nitric oxide (IC50: 72.82 μg/mL) radical and lipid peroxidation (IC50: 75.78 μg/mL) inhibition. MEHSR was found to induce Ehrlich ascites carcinoma (EAC) cell death at a dose dependent fashion. At dose 10 mg/kg, MEHSR significantly inhibited tumor cell growth rate (62.24%; p < 0.05), decreased tumor weight (57.81%; p < 0.05), increased life span (38.97%) compared to the untreated control mice. MEHSR also restored all hematological parameters of EAC-bearing mice towards normal level. Furthermore, administration of MEHSR induced apoptosis of EAC cells as observed in Hoechst 33342 stained cells under fluorescence microscope. Arachidic acid (49.18%), oleic acid (36.36%) and octadecanoic acid (14.47%) were identified as the major components of MEHSR by GC-MS analysis. Conclusion In a nutshell, our findings proposed that MEHSR may possess promising antioxidant and antineoplastic efficacy against Ehrlich ascites carcinoma cells by induction of cell apoptosis. Therefore, it might be a potent and novel candidate for anticancer therapy.

Keywords