Microsystems & Nanoengineering (Sep 2023)
A new method of continuous blood pressure monitoring using multichannel sensing signals on the wrist
Abstract
Abstract Hypertension is a worldwide health problem and a primary risk factor for cardiovascular disease. Continuous monitoring of blood pressure has important clinical value for the early diagnosis and prevention of cardiovascular disease. However, existing technologies for wearable continuous blood pressure monitoring are usually inaccurate, rely on subject-specific calibration and have poor generalization across individuals, which limit their practical applications. Here, we report a new blood pressure measurement method and develop an associated wearable device to implement continuous blood pressure monitoring for new subjects. The wearable device detects cardiac output and pulse waveform features through dual photoplethysmography (PPG) sensors worn on the palmar and dorsal sides of the wrist, incorporating custom-made interface sensors to detect the wearing contact pressure and skin temperature. The detected multichannel signals are fused using a machine-learning algorithm to estimate continuous blood pressure in real time. This dual PPG sensing method effectively eliminates the personal differences in PPG signals caused by different people and different wearing conditions. The proposed wearable device enables continuous blood pressure monitoring with good generalizability across individuals and demonstrates promising potential in personal health care applications.