Prostate Cancer (Jan 2020)

Synthetic Apparent Diffusion Coefficient for High b-Value Diffusion-Weighted MRI in Prostate

  • Prativa Sahoo,
  • Russell C. Rockne,
  • Alexander Jung,
  • Pradeep K Gupta,
  • Ram K. S. Rathore,
  • Rakesh K. Gupta

DOI
https://doi.org/10.1155/2020/5091218
Journal volume & issue
Vol. 2020

Abstract

Read online

Purpose. It has been reported that diffusion-weighted imaging (DWI) with ultrahigh b-value increases the diagnostic power of prostate cancer. DWI with higher b-values is challenging as it commonly suffers from low signal-to-noise ratio (SNR), distortion, and longer scan time. The aim of our study was to develop a technique for quantification of apparent diffusion coefficient (ADC) for higher b-values from lower b-value DW images. Materials and Methods. Fifteen patients (7 malignant and 8 benign) were included in this study retrospectively with the institutional ethical committee approval. All images were acquired at a 3T MR scanner. The ADC values were calculated using a monoexponential model. Synthetic ADC (sADC) for higher b-value was computed using a log-linear model. Contrast ratio (CR) between prostate lesion and normal tissue on synthetic DWI (sDWI) was computed and compared with original DWI and ADC images. Results. No significant difference was observed between actual ADC and sADC for b-2000 in all prostate lesions. However, CR increased significantly (p=0.002, paired t-test) in sDWI as compared to DWI. Malignant lesions showed significantly lower sADC as compared to benign lesions (p=0.0116, independent t-test). Mean (±standard deviation) of sADC of malignant lesions was 0.601 ± 0.06 and for benign lesions was 0.92 ± 0.09 (10−3 mm2/s). Discussion/Conclusion. Our initial investigation suggests that the ADC values corresponding to higher b-value can be computed using log-linear relationship derived from lower b-values (b ≤ 1000). Our method might help clinicians to decide the optimal b-value for prostate lesion identification.