npj Schizophrenia (Dec 2021)
Intrinsic cerebellar functional connectivity of social cognition and theory of mind in first-episode psychosis patients
Abstract
Abstract Neuroimaging studies have revealed how intrinsic dysconnectivity among cortical regions of the mentalizing network (MENT) and the mirror neuron system (MNS) could explain the theory of mind (ToM) deficit in schizophrenia patients. However, despite the concurrent involvement of the cerebellum with the cortex in social cognition, the dysfunction in intrinsic interplay between the cerebellar nodes of MENT/MNS and the cortex in schizophrenia patients remains unknown. Thus, we aimed to investigate whether resting-state cerebello–cortical dysconnectivity exists in first-episode psychosis (FEP) patients in relationship with their ToM deficit. A total of 37 FEP patients and 80 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging. Using a priori-defined cerebellar seeds that functionally connect to the MENT (right crus II) and MNS (right crus I), we compared cerebello–cortical functional connectivities (FCs) in FEP patients and HCs. Correlations between cerebello–parietal connectivities and ToM performance were investigated in FEP patients. FEP patients showed hyperconnectivity between the right crus II and anterior cingulate gyrus and between the right crus I and supplementary motor area, bilateral postcentral gyrus, and right central/parietal operculum (CO/PO). Hypoconnectivity was found between the right crus II and left supramarginal gyrus (SMG) in FEP patients. FCs between the right crus II and left SMG and between the right crus I and right CO/PO were significantly correlated with ToM scores in FEP patients. In accordance with the “cognitive dysmetria” hypothesis, our results highlight the importance of cerbello-cortical dysconnectivities in understanding social cognitive deficits in schizophrenia patients.