Neural Regeneration Research (Feb 2025)

Overexpression of low-density lipoprotein receptor prevents neurotoxic polarization of astrocytes via inhibiting NLRP3 inflammasome activation in experimental ischemic stroke

  • Shuai Feng,
  • Juanji Li,
  • Tingting Liu,
  • Shiqi Huang,
  • Xiangliang Chen,
  • Shen Liu,
  • Junshan Zhou,
  • Hongdong Zhao,
  • Ye Hong

DOI
https://doi.org/10.4103/NRR.NRR-D-23-01263
Journal volume & issue
Vol. 20, no. 2
pp. 491 – 502

Abstract

Read online

Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury. Low-density lipoprotein receptor, a classic cholesterol regulatory receptor, has been found to inhibit NLR family pyrin domain containing protein 3 (NLRP3) inflammasome activation in neurons following ischemic stroke and to suppress the activation of microglia and astrocytes in individuals with Alzheimer’s disease. However, little is known about the effects of low-density lipoprotein receptor on astrocytic activation in ischemic stroke. To address this issue in the present study, we examined the mechanisms by which low-density lipoprotein receptor regulates astrocytic polarization in ischemic stroke models. First, we examined low-density lipoprotein receptor expression in astrocytes via immunofluorescence staining and western blotting analysis. We observed significant downregulation of low-density lipoprotein receptor following middle cerebral artery occlusion reperfusion and oxygen–glucose deprivation/reoxygenation. Second, we induced the astrocyte-specific overexpression of low-density lipoprotein receptor using astrocyte-specific adeno-associated virus. Low-density lipoprotein receptor overexpression in astrocytes improved neurological outcomes in middle cerebral artery occlusion mice and reversed neurotoxic astrocytes to create a neuroprotective phenotype. Finally, we found that the overexpression of low-density lipoprotein receptor inhibited NLRP3 inflammasome activation in oxygen–glucose deprivation/reoxygenation injured astrocytes and that the addition of nigericin, an NLRP3 agonist, restored the neurotoxic astrocyte phenotype. These findings suggest that low-density lipoprotein receptor could inhibit the NLRP3-meidiated neurotoxic polarization of astrocytes and that increasing low-density lipoprotein receptor in astrocytes might represent a novel strategy for treating cerebral ischemic stroke.

Keywords