Journal of Applied Informatics and Computing (Nov 2024)

Prediction of Air Quality Index Using Ensemble Models

  • Theresia Herlina Rochadiani

DOI
https://doi.org/10.30871/jaic.v8i2.8532
Journal volume & issue
Vol. 8, no. 2
pp. 384 – 389

Abstract

Read online

The impact of air pollution on health is measured by the Air Quality Index (AQI). Accurate AQI prediction is essential for pollution reduction and public health recommendations. Traditional methods of monitoring air quality are inaccurate and time-consuming. This study uses IoT-based air quality data from Kampung Kalipaten, Tangerang to build an AQI prediction model with machine learning, specifically an ensemble model. Ensemble techniques such as bagging and boosting, which increase the reliability of predictions by reducing model bias and inconsistency, improve AQI prediction. Four ensemble models used in this study, they are Random Forest Regressor, Gradient Boosting Regressor, Adaboosting Regressor, and Bagging Regressor. As the evaluation, RMSE and R2 metrics used. Random Forest Regressor perform the best with RMSE value of 0.6054 and R2 value of 0.6271, although no significant differences of RMSE and R2 value of the rest models.

Keywords