Journal of Nanostructures (Jan 2019)

SnCl4/nano-sawdust as an Efficient Bio-based Catalyst for the Synthesis of 2-Substituted Benzothiazoles and Benzimidazoles

  • Bi Bi Fatemeh Mirjalili,
  • Abdolhamid Bamoniri,
  • Sedighe Nazemian,
  • Reza Zare Reshquiyea

DOI
https://doi.org/10.22052/JNS.2019.01.020
Journal volume & issue
Vol. 9, no. 1
pp. 183 – 189

Abstract

Read online

SnCl4/nano-sawdust was prepared as a carbohydrate-based catalyst containing of tin bearing cellulose units. The catalyst was characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDS). The catalyst was applied successfully as a readily available, inexpensive, biodegradable and environmentally benign heterogeneous bio-based solid acid for the one pot synthesis of 2-substituted benzimidazoles and benzothiazoles. SnCl4/nano-sawdust was prepared as a carbohydrate-based catalyst containing of tin bearing cellulose units. The catalyst was characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDS). The catalyst was applied successfully as a readily available, inexpensive, biodegradable and environmentally benign heterogeneous bio-based solid acid for the one pot synthesis of 2-substituted benzimidazoles and benzothiazoles. SnCl4/nano-sawdust was prepared as a carbohydrate-based catalyst containing of tin bearing cellulose units. The catalyst was characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDS). The catalyst was applied successfully as a readily available, inexpensive, biodegradable and environmentally benign heterogeneous bio-based solid acid for the one pot synthesis of 2-substituted benzimidazoles and benzothiazoles.

Keywords