IEEE Transactions on Neural Systems and Rehabilitation Engineering (Jan 2023)

A Novel Sleep Staging Method Based on EEG and ECG Multimodal Features Combination

  • Juntong Lyu,
  • Wenbin Shi,
  • Chuting Zhang,
  • Chien-Hung Yeh

DOI
https://doi.org/10.1109/TNSRE.2023.3323892
Journal volume & issue
Vol. 31
pp. 4073 – 4084

Abstract

Read online

Accurate sleep staging evaluates the quality of sleep, supporting the clinical diagnosis and intervention of sleep disorders and related diseases. Although previous attempts to classify sleep stages have achieved high classification performance, little attention has been paid to integrating the rich information in brain and heart dynamics during sleep for sleep staging. In this study, we propose a generalized EEG and ECG multimodal feature combination to classify sleep stages with high efficiency and accuracy. Briefly, a hybrid features combination in terms of multiscale entropy and intrinsic mode function are used to reflect nonlinear dynamics in multichannel EEGs, along with heart rate variability measures over time/frequency domains, and sample entropy across scales are applied for ECGs. For both the max-relevance and min-redundancy method and principal component analysis were used for dimensionality reduction. The selected features were classified by four traditional machine learning classifiers. Macro-F1 score, macro-geometric mean, and Cohen kappa value are adopted to evaluate the classification performance of each class in an imbalanced dataset. Experimental results show that EEG features contribute more to wake stage classification while ECG features contribute more to deep sleep stages. The proposed combination achieves the highest accuracy of 84.3% and the highest kappa value of 0.794 on the support vector machine in the ISRUC-S3 dataset, suggesting the proposed multimodal features combination is promising in accuracy and efficiency compared to other state-of-the-art methods.

Keywords