Sensors (Oct 2022)
Reorganization of Brain Functional Network during Task Switching before and after Mental Fatigue
Abstract
Mental fatigue is a widely studied topic on account of its serious negative effects. But how the neural mechanism of task switching before and after mental fatigue remains a question. To this end, this study aims to use brain functional network features to explore the answer to this question. Specifically, task-state EEG signals were recorded from 20 participants. The tasks include a 400-s 2-back-task (2-BT), followed by a 6480-s of mental arithmetic task (MAT), and then a 400-s 2-BT. Network features and functional connections were extracted and analyzed based on the selected task switching states, referred to from Pre_2-BT to Pre_MAT before mental fatigue and from Post_MAT to Post_2-BT after mental fatigue. The results showed that mental fatigue has been successfully induced by long-term MAT based on the significant changes in network characteristics and the high classification accuracy of 98% obtained with Support Vector Machines (SVM) between Pre_2-BT and Post_2-BT. when the task switched from Pre_2-BT to Pre_MAT, delta and beta rhythms exhibited significant changes among all network features and the selected functional connections showed an enhanced trend. As for the task switched from Post_MAT to Post_2-BT, the network features and selected functional connectivity of beta rhythm were opposite to the trend of task switching before mental fatigue. Our findings provide new insights to understand the neural mechanism of the brain in the process of task switching and indicate that the network features and functional connections of beta rhythm can be used as neural markers for task switching before and after mental fatigue.
Keywords