Nature Communications (Jul 2020)

Machine-learning approach expands the repertoire of anti-CRISPR protein families

  • Ayal B. Gussow,
  • Allyson E. Park,
  • Adair L. Borges,
  • Sergey A. Shmakov,
  • Kira S. Makarova,
  • Yuri I. Wolf,
  • Joseph Bondy-Denomy,
  • Eugene V. Koonin

DOI
https://doi.org/10.1038/s41467-020-17652-0
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 12

Abstract

Read online

CRISPR-Cas is a host adaptive immunity system and viruses harbor diverse anti-CRISPR proteins (Acrs). Here, the authors develop a random forest machine-learning approach to predict Acrs, identifying 2500 candidate Acr families, which expand the current repertoire of predicted Acrs by two orders of magnitude.