Scientific Reports (Jul 2024)

Automatic wild bird repellent system that is based on deep-learning-based wild bird detection and integrated with a laser rotation mechanism

  • Yu-Chieh Chen,
  • Jing-Fang Chu,
  • Kuang-Wen Hsieh,
  • Tzung-Han Lin,
  • Pei-Zen Chang,
  • Yao-Chuan Tsai

DOI
https://doi.org/10.1038/s41598-024-66920-2
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Wild bird repulsion is critical in agriculture because it helps avoid agricultural food losses and mitigates the risk of avian influenza. Wild birds transmit avian influenza in poultry farms and thus cause large economic losses. In this study, we developed an automatic wild bird repellent system that is based on deep-learning-based wild bird detection and integrated with a laser rotation mechanism. When a wild bird appears at a farm, the proposed system detects the bird’s position in an image captured by its detection unit and then uses a laser beam to repel the bird. The wild bird detection model of the proposed system was optimized for detecting small pixel targets, and trained through a deep learning method by using wild bird images captured at different farms. Various wild bird repulsion experiments were conducted using the proposed system at an outdoor duck farm in Yunlin, Taiwan. The statistical test results of our experimental data indicated that the proposed automatic wild bird repellent system effectively reduced the number of wild birds in the farm. The experimental results indicated that the developed system effectively repelled wild birds, with a high repulsion rate of 40.3% each day.