Applied Sciences (Mar 2020)
Optimizing Food Waste Composting Parameters and Evaluating Heat Generation
Abstract
The optimal initial moisture content and seeding proportion with mature compost (microbial inoculant) during food waste composting were investigated. This involved six different moisture contents (42%, 55%, 61%, 66%, 70%, and 78%) and four different mature compost seeding amounts (0%, 10%, 20%, and 30% w/w). The temperature variation of these different setups during the first four days of composting was used to determine the most effective one. Our findings showed that the initial moisture contents of 55–70% and the 20% w/w of mature compost were optimal for effective food waste composting. A 400 kg compost pile with the optimal compost mixture ratio was then used to study the evolution and spatial distribution of the temperature during a 30-day composting period. Finally, the heat produced during the 30-day composting process was estimated to be 2.99 MJ/kg. Further investigations, including a cost–benefit analysis from a pilot facility, would be required to comprehensively conclude the feasibility of food waste composting as a bioenergy source.
Keywords