Computer Methods and Programs in Biomedicine Update (Jan 2025)
A computer-based method for the automatic identification of the dimensional features of human cervical vertebrae
Abstract
Background and objective: Accurately measuring cervical vertebrae dimensions is crucial for diagnosing conditions, planning surgeries, and studying morphological variations related to gender, age, and ethnicity. However, traditional manual measurement methods, due to their labour-intensive nature, time-consuming process, and susceptibility to operator variability, often fall short in providing the objectivity required for reliable measurements. This study addresses these limitations by introducing a novel computer-based method for automatically identifying the dimensional features of human cervical vertebrae, leveraging 3D geometric models obtained from CT or 3D scanning. Methods: The proposed approach involves defining a local coordinate system and establishing a set of rules and parameters to evaluate the typical dimensional features of the vertebral body, foramen, and spinous process in the sagittal and coronal planes of the high-density point cloud of the cervical vertebra model. This system provides a consistent measurement reference frame, improving the method's reliability and objectivity. Based on this reference system, the method automates the traditional standard protocol, typically performed manually by radiologists, through an algorithmic approach. Results: The performance of the computer-based method was compared with the traditional manual approach using a dataset of nine complete cervical tracts. Manual measurements were conducted following a defined protocol. The manual method demonstrated poor repeatability and reproducibility, with substantial differences between the minimum and maximum values for the measured features in intra- and inter-operator evaluations. In contrast, the measurements obtained with the proposed computer-based method were consistent and repeatable. Conclusions: The proposed computer-based method provides a more reliable and objective approach for measuring the dimensional features of cervical vertebrae. It establishes a procedural standard for deducing the morphological characteristics of cervical vertebrae, with significant implications for clinical applications, such as surgical planning and diagnosis, as well as for forensic anthropology and spinal anatomy research. Further refinement and validation of the algorithmic rules and investigations into the influence of morphological abnormalities are necessary to improve the method's accuracy.