Ceramics (Jul 2022)
Calcium Silicate Hydrate Cation-Exchanger from Paper Recycling Ash and Waste Container Glass
Abstract
Synthetic 11 Å tobermorite (Ca5Si6O16(OH)2.4H2O) and its Al-substituted analogue are layer-lattice ion-exchangers with potential applications in nuclear and hazardous wastewater treatment. The present study reports the facile one-pot hydrothermal synthesis of an Al-tobermorite-rich cation-exchanger from a combination of paper recycling ash, post-consumer container glass, and lime, with compositional ratios of [Ca]/[Si + Al] = 0.81 and [Al]/[Si + Al] = 0.18. The reaction products were characterized by powder X-ray diffraction analysis, 29Si magic angle spinning nuclear magnetic resonance spectroscopy, and scanning electron microscopy. Hydrothermal processing in 4 M NaOH(aq) at 100 °C for 7 days yielded an Al-tobermorite-rich product that also contained katoite (Ca3Al2SiO12H8), portlandite (Ca(OH)2), calcite (CaCO3), and amorphous silicate gel. The hydrothermal product was found to have a Cs+ cation exchange capacity of 59 ± 4 meq 100 g−1 and selective Cs+ distribution coefficients (Kd) of 574 ± 13 and 658 ± 34 cm3 g−1 from solutions with molar ratios [Cs+]:[Na+] and [Cs+]:[Ca2+] of 1:100. In a batch sorption study at 20 °C, the uptakes of Pb2+, Cd2+, and Cs+ were determined to be 1.78 ± 0.04, 0.65 ± 0.06, and 0.36 ± 0.03 mmol g−1, respectively. The kinetics of Pb2+, Cd2+, and Cs+ removal were described by the pseudo-second-order rate model, which gave respective rate constants (k2) of 0.010, 0.027, and 1.635 g mmol−1 min−1, and corresponding correlation coefficients (R2) of 0.997, 0.996, and 0.999. The metal ion sorption properties of the tobermorite-rich product compared favorably with those of other waste-derived tobermorites reported in the literature. Potential strategies to improve the yield, crystallinity, and sorption characteristics of the product are discussed.
Keywords