Subchronic particulate matter exposure underlying polyhexamethylene guanidine phosphate–induced lung injury: Quantitative and qualitative evaluation with chest computed tomography
Cherry Kim,
Sang Hoon Jeong,
Hong Lee,
Yoon Jeong Nam,
Hyejin Lee,
Jin Young Choi,
Yu-Seon Lee,
Jaeyoung Kim,
Yoon Hee Park,
Ju-Han Lee
Affiliations
Cherry Kim
Department of Radiology, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
Sang Hoon Jeong
Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
Hong Lee
Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
Yoon Jeong Nam
Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
Hyejin Lee
Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
Jin Young Choi
Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
Yu-Seon Lee
Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
Jaeyoung Kim
Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
Yoon Hee Park
Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
Ju-Han Lee
Department of Pathology, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea; Corresponding author.
Our study was to explore the effects of subchronic particulate matter (PM) exposure on lung injury induced by polyhexamethylene guanidine phosphate (PHMG-p) in a rat model. Specifically, we investigated pulmonary inflammation, fibrosis, and tumor formation using chest computed tomography (CT), and histopathologic examination. PHMG-p was administered intratracheally to 20 male rats. After an initial week of PHMG-p treatment, the experimental group (PM group) received intratracheal administration of PM suspension, while the control group received normal saline. This regimen was continued for 10 weeks to induce subchronic PM exposure. Chest CT scans were conducted on all rats, followed by the extraction of both lungs for histopathological analysis. All CT images underwent comprehensive quantitative and qualitative analyses. Pulmonary inflammation was markedly intensified in rats subjected to subchronic PM exposure in the PM group compared to those in the control. Similarly, lung fibrosis was more severe in the PM group as observed on both chest CT and histopathologic examination. Quantitative chest CT analysis revealed that the mean lesion volume was significantly greater in the PM group than in the control group. Although the incidence of bronchiolo-alveolar hyperplasia was higher in the PM group compared to the control group, this difference was not statistically significant. In summary, subchronic PM exposure exacerbated pulmonary inflammation and fibrosis underlying lung injury induced by PHMG-p.