BMC Chemistry (Feb 2024)

Vancomycin and nisin-modified magnetic Fe3O4@SiO2 nanostructures coated with chitosan to enhance antibacterial efficiency against methicillin resistant Staphylococcus aureus (MRSA) infection in a murine superficial wound model

  • Mona Nasaj,
  • Abbas Farmany,
  • Leili Shokoohizadeh,
  • Farid Aziz Jalilian,
  • Reza Mahjoub,
  • Ghodratollah Roshanaei,
  • Alireza Nourian,
  • Omid Heydari Shayesteh,
  • Mohammadreza Arabestani

DOI
https://doi.org/10.1186/s13065-024-01129-y
Journal volume & issue
Vol. 18, no. 1
pp. 1 – 22

Abstract

Read online

Abstract Background The objective of this research was to prepare some Fe3O4@SiO2@Chitosan (CS) magnetic nanocomposites coupled with nisin, and vancomycin to evaluate their antibacterial efficacy under both in vitro and in vivo against the methicillin-resistant Staphylococcus. aureus (MRSA). Methods In this survey, the Fe3O4@SiO2 magnetic nanoparticles (MNPs) were constructed as a core and covered the surface of MNPs via crosslinking CS by glutaraldehyde as a shell, then functionalized with vancomycin and nisin to enhance the inhibitory effects of nanoparticles (NPs). X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (FE-SEM), vibrating sample magnetometer (VSM), and dynamic light scattering (DLS) techniques were then used to describe the nanostructures. Results Based on the XRD, and FE-SEM findings, the average size of the modified magnetic nanomaterials were estimated to be around 22–35 nm, and 34–47 nm, respectively. The vancomycin was conjugated in three polymer-drug ratios; 1:1, 2:1 and 3:1, with the percentages of 45.52%, 35.68%, and 24.4%, respectively. The polymer/drug ratio of 1:1 exhibited the slowest release rate of vancomycin from the Fe3O4@SiO2@CS-VANCO nanocomposites during 24 h, which was selected to examine their antimicrobial effects under in vivo conditions. The nisin was grafted onto the nanocomposites at around 73.2–87.2%. All the compounds resulted in a marked reduction in the bacterial burden (P-value < 0.05). Conclusion The vancomycin-functionalized nanocomposites exhibited to be more efficient in eradicating the bacterial cells both in vitro and in vivo. These findings introduce a novel bacteriocin–metallic nanocomposite that can suppress the normal bacterial function on demand for the treatment of MRSA skin infections.

Keywords