Heliyon (Sep 2024)

Identification and functional characterization of differentially expressed circRNAs in high glucose treated endothelial cells: Construction of circRNA-miRNA-mRNA network

  • Hao Lin,
  • Tongqing Yao,
  • Haoran Ding,
  • Jiapeng Chu,
  • Deqiang Yuan,
  • Fan Ping,
  • Fei Chen,
  • Xuebo Liu

Journal volume & issue
Vol. 10, no. 17
p. e37028

Abstract

Read online

Background: Endothelial dysfunction is a complication of diabetes mellitus (DM), characterized by impaired endothelial function in both microvessels and macrovessels, closely linked to atherosclerosis (AS). Endothelial dysfunction, characterized by impaired endothelial cell (EC) function, is a pivotal factor in AS and DM. Circular RNAs (circRNAs) are endogenous non-coding RNAs that can act as competing endogenous RNAs (ceRNAs) and regulate gene expression. However, the role of circRNAs in ECs dysfunction and AS under high glucose (HG) condition remains elusive. Methods: We performed high-throughput sequencing to identify differentially expressed (DE) circRNAs in human umbilical vein endothelial cells (HUVEC) exposed to HG, one risk factors of endothelial dysfunction and AS. We then validated eight candidate circRNAs by qRT-PCR and functional analysis, directing our attention to hsa_circ_0122319. Moreover, microarray analysis identified the differential expression profiles of miRNAs and mRNAs regulated by hsa_circ_0122319. Subsequently, the construction of the ceRNAs network employed bioinformatic analysis and Cytoscape software. Furthermore, the role of the PI3K-Akt signaling pathway in regulating ceRNAs was evaluated. Results: We detected 917 DE circRNAs in HG treated HUVEC. The parental genes of these circRNAs were enriched in cell cycle, cellular senescence and endocytosis related pathways. The differential expression of hsa_circ_0122319 was confirmed to be most obvious at the cellular level and in clinical samples by qPCR experiments. After overexpression of hsa_circ_0122319, 49 DE miRNAs and 459 DE mRNAs were identified using microarray analysis. Subsequently, a ceRNAs network was constructed, comprising hsa_circ_0122319, 8 miRNAs, and 41 mRNAs. Conclusion: In summary, our study delves into the role of circRNAs in endothelial dysfunction associated with DM and AS. Through high-throughput sequencing and validation, we identified hsa_circ_0122319 as a pivotal regulator of ECs function under HG conditions. It also showed that hsa_circ_0123319 has the potential to serve as a biomarker for DM and its vascular complications, and provides new evidence for future exploration of the intricate molecular mechanisms of endothelial dysfunction in the progression of DM and AS.

Keywords