Horticulturae (Apr 2021)

Biochemical Responses and Leaf Gas Exchange of Fig (<i>Ficus carica</i> L.) to Water Stress, Short-Term Elevated CO<sub>2</sub> Levels and Brassinolide Application

  • Zulias Mardinata,
  • Tengku Edy Sabli,
  • Saripah Ulpah

DOI
https://doi.org/10.3390/horticulturae7040073
Journal volume & issue
Vol. 7, no. 4
p. 73

Abstract

Read online

The identification of the key components in the response to drought stress is fundamental to upgrading drought tolerance of plants. In this study, biochemical responses and leaf gas exchange characteristics of fig (Ficus carica L.) to water stress, short-term elevated CO2 levels and brassinolide application were evaluated. The ‘Improved Brown Turkey’ cultivar of fig was propagated from mature two- to three-year-old plants using cuttings, and transferred into a substrate containing 3:2:1 mixed soil (top soil: organic matters: sand). The experiment was arranged as a nested design with eight replications. To assess changes in leaf gas exchange and biochemical responses, these plants were subjected to two levels of water stress (well-watered and drought-stressed) and grown under ambient CO2 and 800 ppm CO2. Water deficits led to effects on photosynthetic rate, stomatal conductance, transpiration rate, vapour pressure deficit, water use efficiency (WUE), intercellular CO2, and intrinsic WUE, though often with effects only at ambient or elevated CO2. Some changes in content of chlorophyll, proline, starch, protein, malondialdehyde, soluble sugars, and activities of peroxidase and catalase were also noted but were dependent on CO2 level. Overall, fewer differences between well-watered and drought-stressed plants were evident at elevated CO2 than at ambient CO2. Under drought stress, elevated CO2 may have boosted physiological and metabolic activities through improved protein synthesis enabling maintenance of tissue water potential and activities of antioxidant enzymes, which reduced lipid peroxidation.

Keywords