Sensors (Nov 2023)

Optofluidic Flow Cytometer with In-Plane Spherical Mirror for Signal Enhancement

  • Filippo Zorzi,
  • Silvio Bonfadini,
  • Ludovico Aloisio,
  • Matteo Moschetta,
  • Filippo Storti,
  • Francesco Simoni,
  • Guglielmo Lanzani,
  • Luigino Criante

DOI
https://doi.org/10.3390/s23229191
Journal volume & issue
Vol. 23, no. 22
p. 9191

Abstract

Read online

Statistical analysis of the properties of single microparticles, such as cells, bacteria or plastic slivers, has attracted increasing interest in recent years. In this regard, field flow cytometry is considered the gold standard technique, but commercially available instruments are bulky, expensive, and not suitable for use in point-of-care (PoC) testing. Microfluidic flow cytometers, on the other hand, are small, cheap and can be used for on-site analyses. However, in order to detect small particles, they require complex geometries and the aid of external optical components. To overcome these limitations, here, we present an opto-fluidic flow cytometer with an integrated 3D in-plane spherical mirror for enhanced optical signal collection. As a result, the signal-to-noise ratio is increased by a factor of six, enabling the detection of particle sizes down to 1.5 µm. The proposed optofluidic detection scheme enables the simultaneous collection of particle fluorescence and scattering using a single optical fiber, which is crucial to easily distinguishing particle populations with different optical properties. The devices have been fully characterized using fluorescent polystyrene beads of different sizes. As a proof of concept for potential real-world applications, signals from fluorescent HEK cells and Escherichia coli bacteria were analyzed.

Keywords