Remote Sensing (Mar 2022)
An Approach for Predicting Global Ionospheric TEC Using Machine Learning
Abstract
Accurate corrections for ionospheric total electron content (TEC) and early warning information are crucial for global navigation satellite system (GNSS) applications under the influence of space weather. In this study, we propose to use a new machine learning model—the Prophet model, to predict the global ionospheric TEC by establishing a short-term ionospheric prediction model. We use 15th-order spherical harmonic coefficients provided by the Center for Orbit Determination in Europe (CODE) as the training data set. Historical spherical harmonic coefficient data from 7 days, 15 days, and 30 days are used as the training set to model and predict 256 spherical harmonic coefficients. We use the predicted coefficients to generate a global ionospheric TEC forecast map based on the spherical harmonic function model and select a year with low solar activity (63.4 < F10.7 < 81.8) and a year with the high solar activity (79.5 < F10.7 < 255.0) to carry out a sliding 2-day forecast experiment. Meanwhile, we verify the model performance by comparing the forecasting results with the CODE forecast product (COPG) and final product (CODG). The results show that we obtain the best predictions by using 15 days of historical data as the training set. Compared with the results of CODE’S 1-Day (C1PG) and CODE’S 2-Day (C2PG). The number of days with RMSE better than COPG on the first and second day of the low-solar-activity year is 151 and 158 days, respectively. This statistic for high-solar-activity year is 183 days and 135 days.
Keywords