Temporal and spatial distribution of histone acetylation in mouse molar development
Wen Du,
Wanyi Luo,
Liwei Zheng,
Xuedong Zhou,
Wei Du
Affiliations
Wen Du
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Prosthodontics II, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
Wanyi Luo
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
Liwei Zheng
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
Xuedong Zhou
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
Wei Du
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
Histone acetylation is one of the most widely studied histone modification, regulating a variety of biological activities like organ development and tumorigenesis. However, the role of histone acetylation in tooth development is poorly understood. Using the mouse molar as a model, we mapped the distribution patterns of histone H3 and H4, as well as their corresponding acetylation sites during tooth formation in order to unveil the connection between histone acetylation modification and tooth development. Moreover, key histone acetyltransferases and histone deacetylases were detected in both epithelial and mesenchymal cells during tooth development by scRNA-seq and immunohistochemistry. These results suggest that histone acetylation modification functions as an important mechanism in tooth development at different stages.