E3S Web of Conferences (Jan 2023)

A robust method to identify the occurrence of a runoff-generated debris flow

  • McCoy Scott W.,
  • Cavagnaro David B.,
  • Kean Jason W.,
  • Thomas Matthew A.,
  • Lindsay Donald N.

DOI
https://doi.org/10.1051/e3sconf/202341501013
Journal volume & issue
Vol. 415
p. 01013

Abstract

Read online

Debris flows generated by rainfall runoff can occur in rocky alpine landscapes and burned steeplands. Runoff-generated debris-flow events are commonly composed of a series of dense granular surge fronts separated by water-rich flows. Owing to this intra-event variability in flow composition and mechanics, post-event interpretations of preserved sedimentary deposits, or lack thereof, can result in a dizzying mix of interpretations that range from clearwater flow to debris flow. Accurate identification of the presence or absence of a debris flow during a runoff event is critical for building empirical models used to predict likelihood of debris-flow occurrence, rainfall thresholds, and flow properties. Here, we propose a simple, quantitative method to identify the occurrence of a runoff-generated debris flow, based on a dimensionless discharge Q* calculated as the ratio of the peak event discharge Qp to the theoretical maximum clearwater runoff rate Qw. Using a preliminary compilation of Q* values from floods and runoff-generated debris flows, we find 98% of floods have Q* values < 1.6, whereas 91% of debris flows have Q* values greater than 1.6. Estimating Q* is typically straightforward as part of standard post-event reconnaissance if suitable rainfall estimates are available, and appears to be a robust indicator that runoff-generated debris flows traversed a particular portion of a valley network.