Frontiers in Radiology (Mar 2024)

Arterial spin labeled perfusion MRI for the assessment of radiation-treated meningiomas

  • Paul Manning,
  • Paul Manning,
  • Shanmukha Srinivas,
  • Divya S. Bolar,
  • Divya S. Bolar,
  • Matthew K. Rajaratnam,
  • David E. Piccioni,
  • Carrie R. McDonald,
  • Carrie R. McDonald,
  • Carrie R. McDonald,
  • Jona A. Hattangadi-Gluth,
  • Nikdokht Farid,
  • Nikdokht Farid,
  • Nikdokht Farid

DOI
https://doi.org/10.3389/fradi.2024.1345465
Journal volume & issue
Vol. 4

Abstract

Read online

PurposeConventional contrast-enhanced MRI is currently the primary imaging technique used to evaluate radiation treatment response in meningiomas. However, newer perfusion-weighted MRI techniques, such as 3D pseudocontinuous arterial spin labeling (3D pCASL) MRI, capture physiologic information beyond the structural information provided by conventional MRI and may provide additional complementary treatment response information. The purpose of this study is to assess 3D pCASL for the evaluation of radiation-treated meningiomas.MethodsTwenty patients with meningioma treated with surgical resection followed by radiation, or by radiation alone, were included in this retrospective single-institution study. Patients were evaluated with 3D pCASL and conventional contrast-enhanced MRI before and after radiation (median follow up 6.5 months). Maximum pre- and post-radiation ASL normalized cerebral blood flow (ASL-nCBF) was measured within each meningioma and radiation-treated meningioma (or residual resected and radiated meningioma), and the contrast-enhancing area was measured for each meningioma. Wilcoxon signed-rank tests were used to compare pre- and post-radiation ASL-nCBF and pre- and post-radiation area.ResultsAll treated meningiomas demonstrated decreased ASL-nCBF following radiation (p < 0.001). Meningioma contrast-enhancing area also decreased after radiation (p = 0.008) but only for approximately half of the meningiomas (9), while half (10) remained stable. A larger effect size (Wilcoxon signed-rank effect size) was seen for ASL-nCBF measurements (r = 0.877) compared to contrast-enhanced area measurements (r = 0.597).ConclusionsASL perfusion may provide complementary treatment response information in radiation-treated meningiomas. This complementary information could aid clinical decision-making and provide an additional endpoint for clinical trials.

Keywords