Frontiers in Network Physiology (Sep 2023)

Multilevel synchronization of human β-cells networks

  • Nicole Luchetti,
  • Nicole Luchetti,
  • Simonetta Filippi,
  • Simonetta Filippi,
  • Simonetta Filippi,
  • Alessandro Loppini,
  • Alessandro Loppini

DOI
https://doi.org/10.3389/fnetp.2023.1264395
Journal volume & issue
Vol. 3

Abstract

Read online

β-cells within the endocrine pancreas are fundamental for glucose, lipid and protein homeostasis. Gap junctions between cells constitute the primary coupling mechanism through which cells synchronize their electrical and metabolic activities. This evidence is still only partially investigated through models and numerical simulations. In this contribution, we explore the effect of combined electrical and metabolic coupling in β-cell clusters using a detailed biophysical model. We add heterogeneity and stochasticity to realistically reproduce β-cell dynamics and study networks mimicking arrangements of β-cells within human pancreatic islets. Model simulations are performed over different couplings and heterogeneities, analyzing emerging synchronization at the membrane potential, calcium, and metabolites levels. To describe network synchronization, we use the formalism of multiplex networks and investigate functional network properties and multiplex synchronization motifs over the structural, electrical, and metabolic layers. Our results show that metabolic coupling can support slow wave propagation in human islets, that combined electrical and metabolic synchronization is realized in small aggregates, and that metabolic long-range correlation is more pronounced with respect to the electrical one.

Keywords