Scientific Reports (Jun 2017)

Interaction-induced edge states in anisotropic non-Fermi liquids

  • I. V. Yurkevich

DOI
https://doi.org/10.1038/s41598-017-03823-5
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 7

Abstract

Read online

Abstract We devise an approach to calculation of scaling dimensions of generic operators describing scattering within multi-channel Luttinger liquid. The local impurity scattering in arbitrary configuration of conducting and insulating channels is investigated and the problem is reduced to a single algebraic matrix equation. The application to a semi-infinite array of chains described by Luttinger liquid models demonstrates that for a weak inter-chain hybridisation and intra-channel electron-electron attraction the edge wire is robust against disorder whereas bulk wires, on contrary, become insulating in some region of inter-chain interaction parameters. This result proves that the edge states may exist in disordered anisotropic strongly correlated systems without time-reversal symmetry breaking or spin-orbit interaction and provide quantized low-temperature transport.