Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer (Nov 2016)
RANTAI PASOK BERAS PADA BULOG BERBASIS NEURAL NETWORK
Abstract
Sebagai lembaga terpenting dalam menjaga ketahanan pangan di Indonesia, perusahaan umum (Perum) Badan urusan Logistik (BULOG) sejak didirikannya memiliki tugas memasok bahan pangan, sehingga pengetahuan dan pengalaman BULOG dalam manajemen rantai pasok pangan dan hasil pertanian lainnya seyogianya dapat diandalkan. Namun BULOG belum teruji dalam perspektif masih menghadapi berbagai permasalahan yang sangat kompleks, yang muncul mulai dari masalah pasokan gabah di level petani, proses penggilingan gabah di level industri penggilingan (miller), hingga proses distribusi beras ke level konsumen. Dengan demikian, sebagai komoditas pangan utama, permasalahan beras bukan hanya merupakan permasalahan ekonomi saja tetapi juga bersifat politis. Data mining dapat membantu dalam memprediksi suatu sistem, sehingga dapat dilakukan pada penelitian ini agar prediksi lebih tepat dan akurat. Penelitian ini teknik yang dipakai ialah neural network backpropagation, ada beberapa tahap dalam peneilitian ini yaitu tahap pengumpulan data historik, pengolahan data, model atau metode yang diusulkan, eksperimen pada model tersebut, evaluasi dan validasi hasil. Pada hasil analisa menunjukan bahwa model ini mempunyai tingkat kesalahan atau error yang kecil atau didalam backpropagation sering disebut dengan mean square erorr (MSE). Disimpulkan bahwa teknik data mining menggunakan neural network backpropagation dapat menghasilkan suatu nilai error yang minimal sehingga tepat dan akurat untuk menentukan jumlah pasokan beras pada tahun berikutnya. Kata kunci: pasok beras, supply chain, data mining, neural network backpropagation, mean square erorr.