Advances in Nonlinear Analysis (Mar 2022)

Standing waves to upper critical Choquard equation with a local perturbation: Multiplicity, qualitative properties and stability

  • Li Xinfu

DOI
https://doi.org/10.1515/anona-2022-0230
Journal volume & issue
Vol. 11, no. 1
pp. 1134 – 1164

Abstract

Read online

In this article, we consider the upper critical Choquard equation with a local perturbation −Δu=λu+(Iα∗∣u∣p)∣u∣p−2u+μ∣u∣q−2u,x∈RN,u∈H1(RN),∫RN∣u∣2=a,\left\{\begin{array}{l}-\Delta u=\lambda u+\left({I}_{\alpha }\ast | u\hspace{-0.25em}{| }^{p})| u\hspace{-0.25em}{| }^{p-2}u+\mu | u\hspace{-0.25em}{| }^{q-2}u,\hspace{1em}x\in {{\mathbb{R}}}^{N},\\ u\in {H}^{1}\left({{\mathbb{R}}}^{N}),\hspace{1em}{\displaystyle \int }_{{{\mathbb{R}}}^{N}}| u\hspace{-0.25em}{| }^{2}=a,\end{array}\right. where N≥3N\ge 3, μ>0\mu \gt 0, a>0a\gt 0, λ∈R\lambda \in {\mathbb{R}}, α∈(0,N)\alpha \in \left(0,N), p=p¯≔N+αN−2p=\bar{p}:= \frac{N+\alpha }{N-2}, q∈2,2+4Nq\in \left(2,2+\frac{4}{N}\right), and Iα=C∣x∣N−α{I}_{\alpha }=\frac{C}{| x{| }^{N-\alpha }} with C>0C\gt 0. When μaq(1−γq)2≤(2K)qγq−2p¯2(p¯−1)\mu {a}^{\tfrac{q\left(1-{\gamma }_{q})}{2}}\le {\left(2K)}^{\tfrac{q{\gamma }_{q}-2\bar{p}}{2\left(\bar{p}-1)}} with γq=N2−Nq{\gamma }_{q}=\frac{N}{2}-\frac{N}{q} and KK being some positive constant, we prove (1)Existence and orbital stability of the ground states.(2)Existence, positivity, radial symmetry, exponential decay, and orbital instability of the “second class” solutions. This article generalized and improved parts of the results obtained for the Schrödinger equation.

Keywords