Foods (Jun 2023)

Design and Experiment of Combined Infrared and Hot-Air Dryer Based on Temperature and Humidity Control with Sea Buckthorn (<i>Hippophae rhamnoides</i> L.)

  • Zhihua Geng,
  • Mengqing Li,
  • Lichun Zhu,
  • Xiaoqiang Zhang,
  • Hongbo Zhu,
  • Xuhai Yang,
  • Xianlong Yu,
  • Qian Zhang,
  • Bin Hu

DOI
https://doi.org/10.3390/foods12122299
Journal volume & issue
Vol. 12, no. 12
p. 2299

Abstract

Read online

A drying device based on infrared radiation heating technology combined with temperature and humidity process control technology was created to increase the drying effectiveness and quality of sea buckthorn. Based on the conventional k-turbulence model, the velocity field in the air distribution chamber was simulated using COMSOL 6.0 software. The airflow of the drying medium in the air distribution chamber was investigated, and the accuracy of the model was verified. Given that the inlet of each drying layer in the original model had a different velocity, the velocity flow field was improved by including a semi-cylindrical spoiler. The results showed that installation of the spoiler improved the homogeneity of the flow field for various air intakes, as the highest velocity deviation ratio dropped from 26.68% to 0.88%. We found that sea buckthorn dried more rapidly after being humidified, reducing the drying time by 7.18% and increasing the effective diffusion coefficient from 1.12 × 10−8 to 1.23 × 10−8 m2/s. The L*, rehydration ratio, and vitamin C retention rate were greater after drying with humidification. By presenting this hot-air drying model as a potential high-efficiency and high-quality preservation technology for sea buckthorn, we hope to advance the development of research in the sea buckthorn drying sector.

Keywords