Plants (Nov 2023)

Differential Species Richness and Ecological Success of Epiphytes and Hemiepiphytes of Neotropical Araceae and Cyclanthaceae

  • Erin C. Riordan,
  • Katharine L. Gerst,
  • Orlando Vargas Ramirez,
  • Philip W. Rundel

DOI
https://doi.org/10.3390/plants12234004
Journal volume & issue
Vol. 12, no. 23
p. 4004

Abstract

Read online

Numerous plant functional traits of ecophysiology and morphology associated with an epiphytic life history have promoted relatively high rates of evolutionary diversification and ecological success in tropical families such as the Orchidaeae, Polypodiaceae, Bromeliaceae, and Cactaceae. Epiphytic life histories are relatively uncommon in the Araceae and rare in the Cyclanthaceae which lack key functional traits for epiphytism. Only two lineages of Neotropical Araceae, Anthurium and Philodendron, include examples of epiphyte life histories. The evolution of a hemiepiphytic life history represented an important development for tropical Araceae by providing functional traits that have greatly expanded opportunities for adaptive radiation and ecological success as indicated by species richness and frequency of occurrence. The key adaptive trait allowing the diversification of hemiepiphytic Araceae was the development of heteroblastic growth of leaves and stems. Although hemiepiphytic life histories are present in the Cyclanthaceae, the family has undergone only modest speciation and limited ecological success in both its epiphytes and hemiepiphytes. Extensive sampling of more than 4600 trees from primary forest on four soil groups in northeastern Costa Rica have found a modest diversity of 15 species of epiphytic Araceae but only two species of epiphytic Cyclanthaceae. In contrast, 38 species of hemiepiphytic Araceae and 5 species of hemiepiphytic Cyclanthaceae were sampled, indicating relatively limited adaptive radiation of hemiepiphytic Cyclanthaceae and lower ecological success. Using summed values of frequency of occurrence as a measure of ecological success, epiphytic Araceae were 18 to 42 times more frequent than epiphytic Cyclanthaceae in swamp, alluvial, and residual soil forests. Summed frequencies of occurrence of hemiepiphytic Araceae were 7 to 13 times higher than those of hemiepiphytic Cyclanthaceae. The four soil groups were similar in their floristic composition of epiphytic and hemiepiphytic Araceae and Cyclanthaceae, but the frequencies of occurrence of both epiphytes and hemiepiphytes were, with few exceptions, highest on swamp soil plots, with alluvial soil plots slightly less favorable.

Keywords