JMIR Formative Research (May 2024)
Longitudinal Changes in Diagnostic Accuracy of a Differential Diagnosis List Developed by an AI-Based Symptom Checker: Retrospective Observational Study
Abstract
BackgroundArtificial intelligence (AI) symptom checker models should be trained using real-world patient data to improve their diagnostic accuracy. Given that AI-based symptom checkers are currently used in clinical practice, their performance should improve over time. However, longitudinal evaluations of the diagnostic accuracy of these symptom checkers are limited. ObjectiveThis study aimed to assess the longitudinal changes in the accuracy of differential diagnosis lists created by an AI-based symptom checker used in the real world. MethodsThis was a single-center, retrospective, observational study. Patients who visited an outpatient clinic without an appointment between May 1, 2019, and April 30, 2022, and who were admitted to a community hospital in Japan within 30 days of their index visit were considered eligible. We only included patients who underwent an AI-based symptom checkup at the index visit, and the diagnosis was finally confirmed during follow-up. Final diagnoses were categorized as common or uncommon, and all cases were categorized as typical or atypical. The primary outcome measure was the accuracy of the differential diagnosis list created by the AI-based symptom checker, defined as the final diagnosis in a list of 10 differential diagnoses created by the symptom checker. To assess the change in the symptom checker’s diagnostic accuracy over 3 years, we used a chi-square test to compare the primary outcome over 3 periods: from May 1, 2019, to April 30, 2020 (first year); from May 1, 2020, to April 30, 2021 (second year); and from May 1, 2021, to April 30, 2022 (third year). ResultsA total of 381 patients were included. Common diseases comprised 257 (67.5%) cases, and typical presentations were observed in 298 (78.2%) cases. Overall, the accuracy of the differential diagnosis list created by the AI-based symptom checker was 172 (45.1%), which did not differ across the 3 years (first year: 97/219, 44.3%; second year: 32/72, 44.4%; and third year: 43/90, 47.7%; P=.85). The accuracy of the differential diagnosis list created by the symptom checker was low in those with uncommon diseases (30/124, 24.2%) and atypical presentations (12/83, 14.5%). In the multivariate logistic regression model, common disease (P<.001; odds ratio 4.13, 95% CI 2.50-6.98) and typical presentation (P<.001; odds ratio 6.92, 95% CI 3.62-14.2) were significantly associated with the accuracy of the differential diagnosis list created by the symptom checker. ConclusionsA 3-year longitudinal survey of the diagnostic accuracy of differential diagnosis lists developed by an AI-based symptom checker, which has been implemented in real-world clinical practice settings, showed no improvement over time. Uncommon diseases and atypical presentations were independently associated with a lower diagnostic accuracy. In the future, symptom checkers should be trained to recognize uncommon conditions.