HortTechnology (Apr 2024)

Evaluating Pollination and Weed Control Strategies under Mesotunnel Systems for Organic Muskmelon Production in Iowa

  • Kephas Mphande,
  • Sharon Badilla-Arias,
  • Nieyan Cheng,
  • José F. González-Acuña,
  • Ajay Nair,
  • Wendong Zhang,
  • Mark L. Gleason

DOI
https://doi.org/10.21273/HORTTECH05379-23
Journal volume & issue
Vol. 34, no. 3

Abstract

Read online

Bacterial wilt of cucurbits, caused by Erwinia tracheiphila, is spread by spotted (Diabrotica undeimpunctata howardi) and striped (Acalymma vittatum) cucumber beetles and results in major losses for US cucurbit (Cucurbitaceae spp.) growers. Organic growers of muskmelon (Cucumis melo) lack reliable control measures against bacterial wilt. During previous field trials in Iowa, USA, a system called mesotunnels, which are 3.5-ft-tall barriers covered with a nylon mesh insect netting, resulted in a higher marketable yield of organic ‘Athena’ muskmelon than low tunnels or noncovered plots. However, satisfactory pollination and weed control are challenging in mesotunnels because the netting covers the crop for most or all of the growing season, and economic feasibility of these systems has not been determined. Consequently, two field trials conducted in Iowa from 2020 to 2022 evaluated strategies to ensure pollination under mesotunnels in commercial-scale plots, assess effectiveness of teff (Eragrostis tef) as a living mulch for weed control in mesotunnel systems, and compare the profitability of the treatment options for organic ‘Athena’ muskmelon. The treatments used during the pollination trial were as follows: full season, in which mesotunnels remained sealed all season and bumble bees (Bombus impatiens) were added at the start of bloom for pollination; open ends, wherein both ends of the tunnels were opened at the start of bloom then reclosed 2 weeks later; and on-off-on, in which nets were removed at the start of bloom and then reinstalled 2 weeks later. The full-season treatment had significantly higher marketable yield than the other treatments in two of three trial years. Plants with the full season and open ends treatments had a bacterial wilt incidence <2.5% across all three years and similar numbers of cucumber beetles, whereas plants with the on-off-on treatment had an average bacterial wilt incidence of 11.0% and significantly more cucumber beetles. The open ends treatment had fewer bee visits to ‘Athena’ muskmelon flowers than the other treatments. In the 2-year (2021–22) weed management trial, treatments applied to the furrow between plastic-mulched rows were as follows: landscape fabric; teff seeded at 4 lb/acre and mowed 3 weeks after seeding; teff seeded at 4 lb/acre and not mowed; a control with bare ground where weeds were mowed 3 weeks after transplanting; and a bare ground control with no mowing. The landscape fabric and mowed teff treatments had statistically similar marketable yield, and mowing appeared to minimize yield losses compared with nonmowed treatments. The landscape fabric had no weeds, followed by mowed teff, mowed bare ground, and nonmowed teff. Nonmowed bare ground had the highest weed biomass. The partial budget and cost-efficiency ratio analysis indicated that the full-season treatment was the most cost-efficient pollination option for mesotunnel systems. An economic analysis of the weed management strategies showed that using teff as a living mulch in the furrows between organic ‘Athena’ muskmelon rows, coupled with timely mowing to suppress its growth, can generate revenue comparable to that of landscape fabric. Our findings suggest that organic ‘Athena’ muskmelon growers in Iowa may gain the greatest yield and soil quality benefits when mesotunnels are kept closed for the entire season, bumble bees are used for pollination, and teff (mowed 3 weeks after seeding) is used to control weeds in the furrows. Further trials integrating these pollination and weed management strategies would help validate a comprehensive approach to organic ‘Athena’ muskmelon production under mesotunnels.

Keywords