South African Journal of Chemical Engineering (Oct 2024)
Kinetic modeling of arabinoxylan extraction from Brewers’ spent grain using alkaline pretreatment at atmospheric pressure
Abstract
This study evaluated the kinetic modeling of arabinoxylan (AX) extraction from Brewers’ spent grain (BSG) by alkaline pretreatment at atmospheric pressure, considering severe (low concentration of NaOH and high temperature) and moderate (high concentration of NaOH and low temperatures) process conditions. The effects of NaOH concentration and temperature on yield extraction were studied over time, as well as the concentration of weak acids and phenolic compounds at the end of the pre-treatment. The AX yield extraction varied from 41.2 % (1 M, 90 °C) to 64.8 % (4 M, 40 °C) after 1 h and 16 h, respectively. Acetic acid ranging from 420 ppm to 1020 ppm was released, while ferulic acid was the phenolic compound produced at the highest concentration ranging from 78.3 ppm to 224.1 ppm. In addition, rates of chemical reactions were correlated mathematically from the experimental data with a good fit, and a sensitivity analysis was performed to understand the kinetic behavior. The first-order kinetic model demonstrates that increasing AX extraction requires both low temperatures (between 30 and 40 °C) and low NaOH concentration, but at the same time, this effect increases the time required (16 h) to obtain the maximum AX yield (64.8 %).