BMC Chemistry (Jul 2022)
Alkali treatment–acid leaching of rare earth elements from phosphogypsum fertilizer: insight for additional resource of valuable components
Abstract
Abstract Phosphogypsum (PG) is the main by-product of phosphoric acid, which is produced by the sulfuric acid attack of phosphate rocks, wet process. This by-product, which contains around 2.0% phosphoric acid, is used as a low-cost soil fertilizer, PGF. PGF consists mainly of gypsum (CaSO4·2H2O), P2O5, SiO2, and other impurities, including a minor amount of rare earth elements, REEs. In general, phosphate rocks contain from about 0.04 to 1.0% REE, which are precipitated with PG. Now, REEs are considered as strategic elements. Therefore, PG is now regarded as a secondary source of REE. This paper address a process for the separation of REEs and sodium sulphate as a product from PGF. This paper is based on the metathesis of the bulk of PGF with sodium carbonate to obtain calcium carbonate precipitated contain REEs. Furthermore, sodium sulphate was obtained as a product. Calcium carbonate containing REEs was leached out by citric acid as a green acid or nitric acid. At optimum conditions, maximum leaching of REEs from CaCO3 after one cycle of leaching by 3.0 mol/L nitric acid at L/S = 3/1, agitation time of 180.0 min., and at a temperature of 25 °C is 75.1%, 361.10 mg/kg from the total REEs present in PGF. While, the maximum leaching of 87.4%, 420.2 mg/kg of REEs from CaCO3 after one cycle of leaching by 1.0 mol/L citric acid, L/S = 5/1, agitation time of 15.0 min., and 85 °C. The REEs that were obtained in the leaching citrate solutions were purified by solvent extraction using 10% of di-2-ethyl hexyl phosphoric acid, HDEHP, in kerosene. The extracted REEs were stripped by 0.5 mol/L H2SO4. The stripped solutions were further treated with 10.0% oxalic acid to precipitate the REEs. The developed procedure can recover REEs from PGF with an efficiency of 85.2% and a purity of 97.7%.
Keywords