Applied Sciences (Sep 2023)

Polarization Sensitivity in Scattering-Type Scanning Near-Field Optical Microscopy—Towards Nanoellipsometry

  • Felix G. Kaps,
  • Susanne C. Kehr,
  • Lukas M. Eng

DOI
https://doi.org/10.3390/app131810429
Journal volume & issue
Vol. 13, no. 18
p. 10429

Abstract

Read online

Electric field enhancement mediated through sharp tips in scattering-type scanning near-field optical microscopy (s-SNOM) enables optical material analysis down to the 10-nm length scale and even below. Nevertheless, the out-of-plane electric field component is primarily considered here due to the lightning rod effect of the elongated s-SNOM tip being orders of magnitude stronger than any in-plane field component. Nonetheless, the fundamental understanding of resonantly excited near-field coupled systems clearly allows us to take profit from all vectorial components, especially from the in-plane ones. In this paper, we theoretically and experimentally explore how the linear polarization control of both near-field illumination and detection can constructively be implemented to (non-)resonantly couple to selected sample permittivity tensor components, e.g., explicitly to the in-plane directions as well. When applying the point-dipole model, we show that resonantly excited samples respond with a strong near-field signal to all linear polarization angles. We then experimentally investigate the polarization-dependent responses for both non-resonant (Au) and phonon-resonant (3C-SiC) sample excitations at a 10.6 µm and 10.7 µm incident wavelength using a tabletop CO2 laser. Varying the illumination polarization angle thus allows one to quantitatively compare the scattered near-field signatures for the two wavelengths. Finally, we compare our experimental data to simulation results and thus gain a fundamental understanding of the polarization’s influence on the near-field interaction. As a result, the near-field components parallel and perpendicular to the sample surface can be easily disentangled and quantified through their polarization signatures, connecting them directly to the sample’s local permittivity.

Keywords