Poultry Science (Sep 2024)

Temporal variation in production performance, biochemical and oxidative stress markers, and gut microbiota in Pekin ducks during the late growth stage

  • Yuchen Liu,
  • Xintong Wang,
  • Dan Zeng,
  • Haiyan Wang,
  • Ying Ma,
  • Xiurong Zhao,
  • Zi Guan,
  • Zhonghua Ning,
  • Lujiang Qu

Journal volume & issue
Vol. 103, no. 9
p. 103894

Abstract

Read online

ABSTRACT: In the late growth stage of commercial Pekin ducks, a significant increase in feed intake and a decline in body weight gain have been observed, leading to impaired feed conversion efficiency. To address this issue, we investigated alterations in production performance, blood biochemical indices, ileum tissue architecture, and microbial community structure in Pekin ducks. The primary objective was to provide robust data supporting the improvement of meat duck production efficiency during the late growth stage (28–42-days-old). Forty 28-day-old Pekin ducks were randomly assigned to 8 replicates, with five ducks per replicate. The rearing period lasted 14 days, with feed and water provided ad libitum. Our findings indicated a significant increase in Pekin duck body and heart weights with advancing age (P < 0.05). Moreover, serum antioxidant enzyme and high-density lipoprotein concentrations significantly increased, whereas triglyceride levels decreased (P < 0.05). Notably, the height of the ileal villi was significantly reduced (P < 0.05). The microbial community structure of the ileum exhibited significant changes as ducks aged, accompanied by a substantial increase in microbial flora diversity, particularly with the formation of more tightly connected microbial network modules. Time-dependent enrichment was observed in microbial gene functions related to energy metabolism pathways. At the genus level, Sphingomonas and Subdoligranulum have emerged as crucial players in microbial differential functional pathways and network formation. These bacteria likely serve as the key driving factors in the dynamic microbial changes that occur in Pekin ducks over time. Overall, our findings suggest a potential decline in the absorption function of the small intestine and fat deposition performance of Pekin ducks during later growth stages, which may be attributed to the maturation and proliferation of the gut microbial community.

Keywords