Revista Brasileira de Meteorologia (Mar 2016)
Avaliação de um Modelo Estocástico de Erro Multidimensional Aplicado a Estimativas de Precipitação por Satélite
Abstract
Resumo Uma das principais aplicações das estimativas de precipitação por satélite é a modelagem hidrológica em bacias onde a rede convencional e em tempo real de pluviômetros são precárias no que se refere à resolução espacial e temporal de dados. Neste trabalho discute-se o desempenho do modelo de erro de precipitação por satélite estocástico multidimensional - SREM2D (do inglês, Two-Dimensional Satellite Rainfall Error Model), o qual simula conjuntos de campos diários de precipitação com os mesmos padrões estatísticos (dispersão) que a diferença dos campos de chuva estimados por satélite e pluviômetro de uma série maior. A maioria dos modelos tratam o erro como uma medida uni-dimensional sem o reconhecimento que a precipitação é um processo intermitente no tempo e no espaço. O modelo SREM2D caracteriza a estrutura espacial, a dinâmica temporal e a variabilidade espacial do erro de estimativa das taxas de precipitação. Este trabalho avalia os resultados das simulações do SREM2D para diversos algoritmos de estimativa de precipitação por satélite na bacia dos rios Tocantins-Araguaia. Resultados mostram que o conjunto obtido através das realizações do modelo SREM2D reduziram o viés dos algoritmos de estimativa de precipitação por satélite principalmente para bacias com área de drenagem superior a 12.000 km2.
Keywords