BMC Cancer (Aug 2021)

Construction of a ceRNA network of hub genes affecting immune infiltration in ovarian cancer identified by WGCNA

  • Rongjia Su,
  • Chengjuan Jin,
  • Lina Zhou,
  • Yannan Cao,
  • Menghua Kuang,
  • Linxia Li,
  • Jiangdong Xiang

DOI
https://doi.org/10.1186/s12885-021-08711-w
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background Ovarian cancer is the leading cause of death among gynecological malignancies. Immunotherapy has demonstrated potential effects in ovarian cancer. However, few studies on immune-related prognostic signatures in ovarian cancer have been reported. This study aimed to identify hub genes associated with immune infiltrates to provide insight into the immune regulatory mechanisms in ovarian cancer. Methods Raw data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) and University of California, Santa Cruz (UCSC) Xena websites. Single-sample gene set enrichment analysis (ssGSEA) and weighted gene co-expression network analysis (WGCNA) were used to identify hub genes. Kaplan-Meier analysis and differential expression analysis were applied to explore the real hub genes. Results Through ssGSEA and WGCNA, 7 hub genes (LY9, CD5, CXCL9, IL2RG, SLAMF1, SLAMF6, and SLAMF7) were identified. Finally, LY9 and SLAMF1 were recognized as the real hub genes in immune infiltrates of ovarian cancer. LY9 and SLAMF1 are classified as SLAM family receptors involved in the activation of hematopoietic cells and the pathogenesis of multiple malignancies. Furthermore, 12 lncRNAs and 43 miRNAs significantly related to the 2 hub genes were applied to construct a lncRNA-miRNA-mRNA ceRNA network. The lncRNA-miRNA-mRNA ceRNA network shows upstream regulatory sites of the 2 hub genes. Conclusions These findings improve our understanding of the regulatory mechanism of and reveal potential immune checkpoints for immunotherapy for ovarian cancer.

Keywords