Current Issues in Molecular Biology (Apr 2024)
Revisiting Neuroblastoma: Nrf2, NF-κB and Phox2B as a Promising Network in Neuroblastoma
Abstract
Neuroblastoma is the most common solid extracranial tumor during childhood; it displays extraordinary heterogeneous clinical courses, from spontaneous regression to poor outcome in high-risk patients due to aggressive growth, metastasizing, and treatment resistance. Therefore, the identification and detailed analysis of promising tumorigenic molecular mechanisms are inevitable. This review highlights the abnormal regulation of NF-κB, Nrf2, and Phox2B as well as their interactions among each other in neuroblastoma. NF-κB and Nrf2 play a key role in antioxidant responses, anti-inflammatory regulation and tumor chemoresistance. Recent studies revealed a regulation of NF-κB by means of the Nrf2/antioxidant response element (ARE) system. On the other hand, Phox2B contributes to the differentiation of immature sympathetic nervous system stem cells: this transcription factor regulates the expression of RET, thereby facilitating cell survival and proliferation. As observed in other tumors, we presume striking interactions between NF-κB, Nrf2, and Phox2B, which might constitute an important crosstalk triangle, whose decompensation may trigger a more aggressive phenotype. Consequently, these transcription factors could be a promising target for novel therapeutic approaches and hence, further investigation on their regulation in neuroblastoma shall be reinforced.
Keywords